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Inhomogeneous R 2 Inflationary Models 
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We discuss two inhomogeneous R 2 inflationary models, a spherically symmetric 
model and a Szekers class II model. We analyze the behavior of inflation in these 
systems and find the exact solutions. In the large-time limit, the metric can be 
written for the de Sitter solution. 

1. INTRODUCTION 

Is our observed universe homogeneous and isotropic on very large 
scales? In this paper we examine inflation in inhomogeneous universes. In 
the standard hot big bang model homogeneity and isotropy are put in by 
hand as initial conditions, but with no explanation. The inflationary universe 
(Guth, 1981; Linde, 1982; Albrecht and Steinhart, 1982; Abbott and Wise, 
1984; Lucchin and Matarrese, 1985; Mathiazhagan and Johri, 1984; La and 
Steinhardt, 1989; Mijic et al., 1986; Berkin, 1990; Barrow, 1990; Barrow 
and Ottewili, 1983; Maeda, 1988) is regarded as one of the best explanations, 
and has been investigated widely in the past decade. So far there are two 
basic types of inflationary models. One type introduces a scalar field into 
the Lagrangian action (Guth, 1981; Linde, 1982; Albrecht and Steinhart, 
1982; Abbott and Wise, 1984; Lucchin and Matarrese, 1985), Mathiazhagan 
and Johri, 1984; La and Steinhardt, 1989), namely that of gravity coupled 
minimally to a real scalar field. Old inflation (Guth, 1981) new inflation 
(Linde, 1982; Albrecht and Steinhart, 1982), chaotic inflation (Abbott and 
Wise, 1984; Lucchin and Matarrese, 1985), and extended inflation (Mathi- 
azhagan and Johri, 1984; La and Steinhardt, 1989) take place with difference 
scalar potential and initial values. 

Another type is based on higher-derivative gravity (Mijic et al., 1986; 
Berkin, 1990; Barrow and Ottewill, 1983; Barrow, 1987; Maeda, 1988) or 
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a cosmological constant (Wald, 1983; Jensen and Stein-Schabes, 1987). In 
this type an interesting mechanism dubbed R 2 inflation adds the R 2 term to 
the Lagrangian action; it has been studied by many authors. However, these 
models are described within the framework of the homogeneous Bianchi 
types, even the homogeneous and isotropic FRW cosmology. Hence the 
homogeneity is still put in by hand. The reasons for this are purely technical. 

Recently, several authors have studied inflation in homogeneous space- 
time. Stein-Schabes (1987) has presented the exact inflationary solutions in 
a spherically symmetric, inhomogeneous metric in the presence of a massless 
scalar field with flat potential, and discussed the process of isotropization 
and homogenization in detail. Carone and Guth (1990) have analyzed 
inhomogeneous models with potential 

V(~ ) = A[~b 4 ln(~b 2/02) + (v 4 -  ~b 4)/2] 

Jensen and Stein-Schabes (1987) have proved that inflation exists in inhomo- 
geneous space-time with a positive cosmological constant. 

But R 2 inflation in inhomogeneous space-time has not been studied in 
detail. In this paper we discuss the R 2 inflation in inhomogeneous space-time 
with spherical symmetry and in inhomogeneous Szekers class II space-time. 

2. INHOMOGENEOUS CASE WITH SPHERICAL SYMMETRY 

We start with the Lagrangian density L = R + eR 2 + Lm, where R is the 
Ricci scale and e # 0. The field equations are 

(1 +2~R)(Rab-g~oR/2) =--2egab(R2/4+ DR) +2g.R;ab+ Tab (2.1) 

where units are taken with 8~G= C= 1, Tab = (p+p)UaUb+pgab. 
NOW we consider the Tolman-Bondi line element (Stein-Schabes, 1987) 

dsE=-dtz + x2(r, t) dr2+ y2(r, t)(dO2 + sin 2 0 dcp 2) (2.2) 

In this metric, the field equations can be written as 

(1 + 2~R)[2f(~'/XY+ ~r2/y2+ 1 / y 2 _ ( 2 y , / y +  y ,2 / y2_2X ,  Y , /XY) /X2  ] 

= 2e(R2/4 + DR) + 2eR;,, + p (2.3) 

(1 + 2 g)(EJ /r+ i 2/r2 + l / r  2 -  r ' 2 / x2r  2) 

= 2e(R2/4 + DR) - 2eR;rr-p (2.4) 

(1 + 2eR)[J(/X+ Y ' / Y + . ~ ' / X Y -  ( Y " / Y - X ' Y ' / X Y ) / X  2] 

= 2e(R2/4 + FIR) -  2eR;oo-P (2.5) 

2(1 + 2eR) (2 (Y ' /XY-  ~"/Y) = 2eR;tr (2.6) 
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As is usually the case, the system of partial differential equations is overdeter- 
mined. So some of the equations will be regarded as dynamical and the rest 
as constraint equations. 

We assume 

X(r, t )=Xr(r)X,( t ) ,  Y(r, t )= Y,(r) Yt(t) (2.7) 

and Y'~ r  Equation (2.6) can be written as 

211 + 2eh( t ) ] ( f f t /X t -  ]rt/yt) 

= 2 e [ 1 2 Y t / Y ~ Y ~ + 4 ( f f , / X , -  ~',/ 2 , 3 , Y , ) f /X t  + 6Xt Yr f  IX ,  Yr] (2.8) 

where 

h(t) = 2(X, /X,  + 2 Y, /Y,  + 2.~, Yt/X, Y,) (2.9) 

f ( r )  = (2 Y"~/Yr + ,z , , = Yr /rr--2Xrrr)/Xr (2.10) 

The overdot signifies O/Ot and the prime O/Or. 
Because the left of equation (2.8) is only dependent on time, but the 

right is dependent on time and space, we have only the following solutions: 

](,IX, = }(,/Y, (2.11) 

1/Y~=f+~ (2.12) 

where k is an arbitrary integer. 
From equation (2.12) we can get the space solution of the metric, 

x r  = r ' / ( 1  - k r 2 / 3 )  '/2 (2.13 ) 

Considering equations (2.3) and (2.5), the time part of the solution is depen- 
dent on 

+ 3HR + R /6  e = (4 - 3 y ) p / 6 e  (2.14) 

= R 2 / 1 2 H -  H R -  H / 2 e -  k / 6 e H X  2 -  kR/3HXZt + p /6  e n  (2.15) 

where 

R = 61:1+ 12H2 + 2 k / X  2 (2.16) 

and H is the Hubble parameter, 

H = iY,/Xt (2.17) 

Equations (2.14) and (2.15) are the same as those in a homogeneous 
Robertson-Walker metric (k /3  = - 1 ,  O, +1, corresponding to open, fiat, 
closed models). 
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1. We first consider the case with no matter. Using the method of 
Berkin (1990), we obtain 

/ t = 0  ~ R =  12H2+2k/X~ (2.18) 

I~=O~R=(6Hz+Zk/XE,){I+[l+l/(6H2+Zk/X~)] '/2} (2.19) 

When k = 0 (flat), Berkin has shown that for e ~ ~ or e finite but large, 
only if any universe satisfies some initial conditions does exponential infla- 
tion take place. Mijic et al. (1986) have studied this case in detail. If  k r 0 
(open or closed), these two relations are not identical even for e ~ ~ .  But 
we know that once the universe starts to inflate, 2k/X 2, will rapidly disappear, 
and these equations approach to the case of  k = 0. So in the case of  k r 0, if 
e ~ oo or e finite but large, exponential inflation exists also. 

2. Now we consider the presence of  matter. The energy-momentum 
conservation implies 

p , ~ X t  3r (2.20) 

When ~, > O, the influence of  matter will be lost rapidly after inflation. So 
the above results remain the same. 

When 7 = 0 ,  from equations (2.14) and (2.15) we find 

R = -  1/2e;  e = -  1/8p (2.21) 

The time part of  the solution is given by 

f (k/p) '/2 sinh[(p/3)l/2t+Xo] k > 0  

X = IXo exp[( p/3)'/2t] k = 0 (2.22) 

[ ( - k /p )  '/2 cosh[(p/3)~/2t+Xo] k < 0  

where X0 is an integer. 
Clearly X, ~ exp[(p/3)w2t] for large time. That  is, in the large-time limit, 

the time part of the metric becomes the de Sitter form. 
Finally, we can construct the full solutions, 

ds 2= -dt2 + Xz~[X~ dP + Y~(dOZ +sin 2 0 d~o2)] (2.23) 

Introducing a new radial variable Z = Yr and a new constant q = k/3, we 
then get 

ds 2= -dt2+X~[dZ2/(1 - oZ 2) +Z2(dO2+sin 2 0 dq~2)] (2.24) 

This is the exact Robertson-Walker metric in its open (q = 1), flat (1/= 0), 
or closed (7/= 1) versions. In the large-time limit, all cases become the exact 
de Sitter solution. The results are similar to those in the presence of  a 
homogeneous scalar field in spherically symmetric inhomogeneous space- 
time (Stein-Schabes, 1987). 
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So even if we assume that the metric is more general than the standard 
model, the equations only accept the isotropic and homogeneous solution. 

3. INHOMOGENEOUS SZEKERS CLASS II SPACE-TIME 

The Szekers class II metric can be written as 

ds 2 = - dt 2 + Q2(t, x,  y,  z) dx 2 + L2(t)(dy 2 + dz 2) (3.1) 

According to Berman (1990), 

Q(t, x, y, z) = r ( t )  . Q~(x, y, z) (3.2) 

The field equations can be written as 

( 1 + 2eR)(31~2/L 2 - f / L  2) 

= 2e (R2 /4  + D R )  + 2 eR;o0 + p (3.3) 

(1 + 2 e R ) ( - 2 L / L -  JL2/L) 

= - 2e(R2/4 + D R )  + 2eR;11 + p  (3.4) 

(1 + 2 e R ) ( - 2 f ~ / L -  [~2/L2 + Q,,s3/L2Q,) 

= -  2e (R2 /4  + D R )  + 2eR;22 + p  (3.5) 

(1 + 2 e R ) ( - Z s  - s  + Q~,22/L2Qs) 

= - 2e (R2/4  + D R )  + 2,~R;33 +p (3.6) 

3 s  s = 0  (3.7) 

f2  = f 3  = 0 (3.8) 

f , 2 =  f~Q,,2/Q,; f ,s= f ,Q~.s /Q,  (3.9) 

(1 + 2~R)Q,.a3/Q~ = - 4e f23 /L  2 (3.10) 

where 

R = 6 ( s  + JL2/L2) - 2(Q~,22 + Q~.ss)/L2Q~ 

fix, y,  z) = (G,22 + Q~,33)/Q, 

From equations (3.7) and (3.8), we easily f i n d f = k .  So R is dependent only 
on time, and we get R;22=R;s3. Using these results in equations (3.5) and 
(3.6), we have 

Q~,~2 = Q~,33 
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On the other hand, t a k i n g f = k  in (3.10), we get two cases: 

1. R = - 1 / 2 e .  In this case, from equations (3.3) and (3.4), we know 
that e=  - 1/8p, 7/=0; here y is given from the state equation P = ( 7 -  1)p. 
We can find the solutions 

and 

(dp, (x) exp[(k/2)'/2(y + z)] 

/ + ~b2(x) exp[-(k/2)'/2(y+z)], k>O 

Qs(x, y, z) = lyzqb,(x) +yr + zCs(x) + r k = 0 (3.11) 

I ~, (x) sin[(-k/2)I/2(y + z)] 

~, +r cos[(-k/2)l/2(y+z)], k < 0  

((k/p)  I/2 sinh[(p/3)~/2t + L0], k > 0 

L(t) = ~Lo exp[(p/3)~/2t], k = 0 (3.12) 

[ ( - k / p )  ~/2 cosh[(p/3)l/2t + L0], k < 0 

where ~bi (x) ( i=  1, 2, 3, 4) are arbitrary functions of x, and L0 is the integra- 
tion constant. 

From the above solutions, we know that the time part of the solution 
is exactly the de Sitter solution when k = 0. If  ~b~ (x)= 0, this solution is the 
same as in Berman (1990). For large time we get L(t)~exp[(p/3)l/2t] when 
k ~ 0 ,  i.e., the time part of  the solution approaches the de Sitter form. 

2. Qs,23 = 0 
In this case, we easily show that k = 0 and get the space solution 

Qs(x, y, z) = y~l(x) + Z~bE(X) + q~s(x) (3.13) 

The equations of  the time part are 

J~ + 3HR + g/6  e = ( 4 -  3 y)p/6e (3.14) 

R = R 2 / 1 2 H - R H - H / 2 e +  p/6cH (3.15) 

and with 

R = 6(s  + s = 6/1+ 12H 2 (3.16) 

These equations are the same as in flat RW models (Linde, 1982; Albrecht 
and Steinhart, 1982; Mijic et al., 1986). Berkin has shown that for e ~ ov or 
e is finite but large, if a universe satisfies some initial conditions, exponential 
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inflation exists. If matter is included, these results remain. In fact, the energy- 
momentum conservation implies 

p,~ 1/L 3r (3.17) 

Therefore if y > 0, once the universe starts to inflate, the matter will rapidly 
lose any influence it may have had. 

This work shows that R 2 inflation exists in inhomogeneous space-time. 
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